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A series of 3-(4,5,6,7-tetrahydro-3H-imidazo[4,5-c]pyridin-2-yl)-1H-quinolin-2-ones have been identi-
fied as a new class of VEGFR-2 kinase inhibitors. A variety of (4,5,6,7-tetrahydro-imidazo[5,4-c]pyri-
din-2-yl)-acetic acid ethyl esters were synthesized, and their VEGFR-2 inhibitory activity was
evaluated. Described herein are the preparation of the series and the effects of the compounds on VEG-
FR-2 kinase activity.

� 2012 Elsevier Ltd. All rights reserved.
Vascular endothelial growth factor receptor (VEGFR-2, KDR) is a
receptor tyrosine kinase that plays important roles in regulating
vascular permeability, endothelial cell proliferation and migration,
and angiogenesis under physiological conditions mediated by
vascular endothelial growth factor (VEGF).1 Upon binding of the
VEGF, VEGFR-2 dimerizes, autophosphorylates, and activates the
VEGFR-2 pathway leading to angiogenesis, the formation of new
capillaries from preexisting blood vessels, enhanced tumor
survival, and tumor migration.2 It has been postulated that the
inhibition of angiogenesis by blocking the VEGFR-2 signaling
pathway results in reduced tumor angiogenesis and tumor growth
suppression.3 Indeed, a number of inhibitors of VEGF-induced
angiogenesis have been shown to be efficacious in tumor xenograft
models.4 Developing small-molecule VEGFR-2 inhibitors for anti-
cancer therapy has been the goal of intensive drug discovery efforts
at many pharmaceutical companies.5 Sorafenib (Bayer/OSI)6 and
sunitinib (Pfizer),7 are VEGFR-2 inhibitors that are used clinically
against several types of cancer. Pazopanib (GlaxoSmithKline) and
vandetanib (AstraZeneca) recently received FDA approval for renal
cell carcinoma and medullary thyroid cancer, respectively (Fig. 1).
ll rights reserved.
A variety of small-molecule inhibitors targeting VEGFR-2 have
been reported and some of them have reached late-stage clinical
development.8 Described herein is a series of tetrahydro-3H-imi-
dazo[4,5-c]pyridine-based inhibitors of VEGFR-2 that were substi-
tuted at the phenyl and tetrahydropyridine moieties. In our efforts
to discover novel small-molecule VEGFR-2 kinase inhibitors, a class
of compounds based on 3-(4,5,6,7-tetrahydro-3H-imidazo[4,5-
c]pyridin-2-yl)-1H-quinolin-2-one (1) (Fig. 2) was identified.
Compound 1 itself was identified as a hit with IC50 of 1 lM for
the inhibition of VEGFR-2 kinase activity through high-throughput
screening (HTS).

Owing to the structural similarities of 1 to known benzimidaz-
olyl quinolinone 2 (IC50 of 1.7 lM)9 and indolyl quinoxalinone 3
(IC50 of 8 nM)10, both of which possessed submicromolar potency
in the VEGFR-2 kinase assay, we sought to investigate the SAR in
ring system A and at the nitrogen of the tetrahydropyridine with
a focus on increasing intrinsic potency. In this communication,
we report the development of tetrahydro-3H-imidazo[4,5-c]pyri-
dine quinolinones as a new class of VEGFR-2 inhibitors.

According to the retrosynthetic analysis as shown in Scheme 1,
the tetrahydro-3H-imidazo[4,5-c]pyridine quinolinones 1 could be
readily prepared by condensing imidazopyridine acetates 5 with
variously substituted 2-aminobenzaldehydes 4. The corresponding
imidazopiperidine acetates 5 were envisaged to come from the
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Figure 1. VEGFR-2 inhibitors approved.
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condensation of imidate 6 with a-aminoketal derivatives 7, which
could be themselves prepared through a Neber rearrangement.11

As shown in Scheme 2, classical conditions for the synthesis of
a-aminoketal derivatives 7 involved treatment of oxime tosylates
9 with KOEt. The tosylates were derived from various ketones 8
that were treated with hydroxylamine followed by tosylation of
the corresponding oximes.

The preparation of imidazopiperidine acetates 512 is outlined in
Scheme 3. Imidazopiperidine 10 was reacted with suitable acyl ha-
lides to afford imidazopiperidine acetates 5. A variety of N-substi-
tuted (4,5,6,7-tetrahydro-3H-imidazo[4,5-c]pyridin-2-yl)acetic
O NOTs
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Scheme 2. Preparation of a-aminoketal derivatives 7 via a Neber rearrangement. Reagent
(c) K, EtOH, Na2SO4, 60 �C, 40–90%.
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acid ethyl ester derivatives were synthesized by following a known
method (Scheme 4).13

Compounds were tested for VEGFR-2 inhibitory activity14 and
the results are summarized in Table 1. In the initial assessment,
inhibitory activity in the micromolar range was observed with no
substitution (1, 11, 12, 13) on the phenyl group (ring A, R2 = H)
and simple alkyl or aryl substitutions at the imidazopiperidine
nitrogen (R1 = Me, Bn, methylpiperidine) on parent compound 1
Table 2.

Of the alkyl substituents, Cbz-protected piperidine (12) slightly
improved inhibitory activity. N-substitution of the imidazopiperi-
dine by either meta- (14, 15) or para-nicotinamide (17, 18) deriva-
tives resulted in increased inhibitory activity. Introduction of
fluorine at the 6-position of the phenyl ring significantly increased
the inhibitory activity (16). 5-Fluorophenyl substitution did not
significantly improve the activity of the para- and meta-nicotin-
amide derivatives (15 and 18, respectively). However, compound
19 containing a 6-F and para-nicotinamide exhibited picomolar
inhibitory activity. To understand the SAR of N-substitution at
the imidazopiperidine, we investigated substitutions with other
amines, such as morpholine (23–27), piperazine (28–32), piperi-
dine (33–37), and pyrrolidine (38). Introduction of a chlorine (26)
at the C(6) position of the phenyl ring instead of fluorine (25) de-
creased potency. Interestingly, loss of activity was also observed
with hydrogen at C(5) (23), fluorine at C(5) (24), and methoxy at
the C(6) position (27) of the phenyl ring. Piperazine had a similar
propensity to attenuate the potency of the compounds. Introduc-
tion of a chlorine (31) or methoxy group (32) in place of the fluo-
rine (30) at the C(6) position of the phenyl ring decreased the
inhibitory activities of the piperazine derivatives. Similar results
were observed in the piperidine derivatives (35, 36). Next, we tried
to introduce a 3- or 4-pyridyl acetate in place of nicotinamide in
the derivatives. Among these pyridyl acetates, 2-pyridyl acetate
exhibited a high overall increase in potency with H or F at the
EtO OEt
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C(6) position of the phenyl ring. When modifying the core with 4-
pyridyl acetate, chlorine (43) at the C(6) position of the phenyl ring
in place of H (41) or F (42) gave rise to inhibitory activity in the
picomolar range.

Measurement of CYP (cytochrome P450) inhibitory activity and
microsomal stability were performed to obtain a preliminary eval-
uation of the toxicities of selected compounds. The data revealed
excellent microsomal stabilities and no significant CYP inhibitory
activity except from compound 42 with respect to 2C9, 3A4 and
2D6. 19 and 21 inhibited 2C9 and 3A4, respectively.

The selected compounds were examined for their inhibitory
activity on the proliferation of human umbilical vein endothelial
cells (HUVEC) induced by the VEGF. The inhibitory activity of com-
pounds on cell proliferation was measured using a Premix WST-1
cell proliferation assay kit.18 In addition, the selected compounds
were evaluated for inhibitory activity against HUVEC tube forma-
tion by Image-Pro Plus (Media Cybernetics) image analysis.19 As
shown in Table 3, selected compounds 19 and 21 showed weak
inhibitory activity for HUVEC proliferation. Compound 19 exhib-
ited marginal inhibitory activities for HUVEC tube formation at
10 lM and no activity was observed for 21 (data not shown). The
low activities for HUVEC proliferation and tube formation of 19
and 21 was presumably attributed to the low degree of cell pene-
tration (Table 4).

To provide a rational for the experimental in vitro activities of
the quinolinone derivatives, compounds were docked into the
crystal structure of VEGFR-2 (pdb code: 3VHE) by using the Glide
software with standard precision (SP) protocols.20 The representa-
tive binding mode of most active compound 19 was shown in Fig-
ure 3.

The quinolinone compounds fit tightly into the ATP binding
cavity of the VEGFR-2 in inactive conformation with similar hydro-
gen bondings to Sutent in KIT kinase.21 Hydrogen bonding interac-
tions are observed between the carbonyl of the quinolinone ring
and N of C919 in the hinge region (3.12 Å). The hydrogen bonding
between the NH of the quinolinone and the main chain carbonyl of
E917 is somewhat blocked by the collision of ring A with V916 and
V899, and this may be the cause of low potency of this compounds.
The fluorine at the C(6) position of ring A makes additional hydro-
gen bonding with NH of K868 (3.43 Å). Without this interaction,
the potency is lowered as shown in series (Table 1, compounds
(14–19), (24–26), (28–30), (33–35), and (39, 40). The chlorine
makes better interaction with K868 than methoxy group, as shown
in series (Table 1, compounds 26, 27, 31, 32, 36, 37). The pyridi-
none ring stackes into the hydrophobic cleft comprised of A866,
L1035 and C1045, and the piperidine ring makes hydrophobic
interaction with the side chain of L840 and Ca of G922. The R1 sub-
stituents extend into the solvent exposed region. The docking
study indicated that the quinolinone compounds could fit into
the binding site and could be potent VEGFR-2 inhibitors.

In summary, we identified a novel 3-(4,5,6,7-tetrahydro-
3H-imidazo[4,5-c]pyridin-2-yl)-1H-quinolin-2-one scaffold that



Table 1
SAR of the 3-(4,5,6,7-tetrahydro-3H-imidazo[4,5-c]pyridin-2-yl)-1H-quinolin-2-one derivatives
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Table 2
Effects of compounds 19 and 21 on CYP inhibitory activity and microsomal stability

CYP (% remaining activity at 10 lM)15 Microsomal stability
(% remaining activity at
10 lM; 30 min incubation)16

Permeability17 (PAMPA)

1A2 3A4 2C9 2C9 2D6 Human nta

16 86 83 99 92 67 96 nt
19 96 89 53 77 90 99 �6.2
21 89 16 94 100 100 92 �6.8
42 58 33 28 35 21 93 nt

a Not tested.

Figure 3. Docking model of VEGFR-2 with compound 19. The side chains of binding
site are shown as lines and labeled with their residue name. Hydrogen bondings are
shown in yellow dashed lines. Parts of the P-loop residues are omitted for clarity.

Table 3
Results of VEGF-induced HUVEC anti-proliferative activity18 for 19 and 21

Control VEGF (20 ng/ml) VEGF + compound 19 VEGF + compound 21

0.1 lM 1 lM 10 lM 0.1 lM 1 lM 10 lM

100 179 120 72 71 92.3 82 79

Table 4
Effects of compound 19 and 21 on HUVEC tube formation (% of control)19

Control Compound 19 Compound 21

1 lM 10 lM 1 lM 10 lM

100 93 62 102 99

S.-Y. Han et al. / Bioorg. Med. Chem. Lett. 22 (2012) 2837–2842 2841
exhibited potent VEGFR-2 inhibitory activity. Compounds 19 and
21 had marginal inhibitory activities for HUVEC proliferation and
tube formation with stable microsomal stabilities and low degrees
of binding to CYPs. Introduction of F and Cl at the C(6) position of
the phenyl ring dramatically increased VEGFR-2 inhibitory activity.
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