1

OPTIMIZING TARGET INTERACTIONS

4.1 Vary Alkyl Substituents

- alkyl group may <u>interact with hydrophobic region in</u> <u>binding site</u>
- vary length and bulk of group to optimise interaction

4. DRUG DESIGN - OPTIMISING BINDING INTERACTIONS

AIM - <u>To optimise binding interactions</u> with target

REASONS

- To increase activity and reduce dose levels
- To increase selectivity and reduce side effects

STRATEGIES

- Vary alkyl substituents
- Vary aryl substituents
- Extension
- Chain extensions / contractions
- Ring expansions / contractions
- Ring variation
- Isosteres
- Simplification
- <u>Rigidification</u>

Notes on synthetic feasibility of analogues

- Feasible to <u>remove alkyl substituents on heteroatoms</u> <u>and replace</u> with other alkyl substituents
- Difficult to modify alkyl substituents on the carbon skeleton of a lead compound. <u>Full synthesis</u> is usually required (or coupling reactions)

4.7 Isosteres and Bio-isosteres Bioisosteres: replace a functional group with another group which retains the same biological activity not necessarily the same valency For performing the same valency

4.8 Simplification

Rationale :

- Lead compounds from <u>natural sources are often</u> <u>complex</u> and <u>difficult to synthesise</u>
- Simplifying the molecule makes <u>synthesis</u> of analogues <u>easier</u>, <u>quicker and cheaper</u>
- Simpler structures <u>may fit binding site easier and</u> increase activity
- Simpler structures <u>may be less toxic if excess</u> functional groups removed

Target binding site

Rotatable bonds

4.10 Structure based drug design

Strategy

Carry out drug design based on the interactions between the lead compound and the target binding site

Procedure

- Crystallise target protein with bound ligand (e.g. enzyme + inhibitor or ligand)
- Acquire structure by X-ray crystallography
- Identify binding site (region where ligand is bound)
- Identify binding interactions between ligand and target (modelling)
- Identify vacant regions for extra binding interactions (modelling)
- 'Fit' analogues into binding site to test binding capability (modelling)

4.11 De Novo Drug Design

The design of novel agents based on a knowledge of the target binding site

Procedure

- Crystallise target protein with bound ligand
- (e.g. enzyme + inhibitor or ligand)
- Acquire structure by X-ray crystallography
- Identify binding site (region where ligand is bound)
- Remove ligand
- Identify potential binding regions in the binding site
- Design a lead compound to interact with the binding site
- Synthesise the lead compound and test it for activity
- Crystallise the lead compound with target protein and identify the actual binding interactions
- Structure based drug design

