
1

Stem Cells – Basic Information

Integrity of **adult tissues** is maintained by the **continuous replacement of cells** that regularly differentiate and die. In most adult tissues are **pools of stem cells** able:

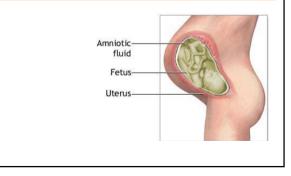
a/ multiply and differentiate into specialised tissue of origin

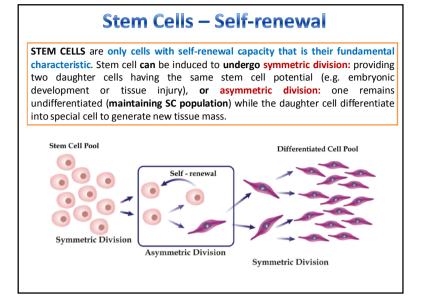
b/ maintain a reserve of undifferentiated cells. Adult progenitor cells are tissues-specific somatic stem cells

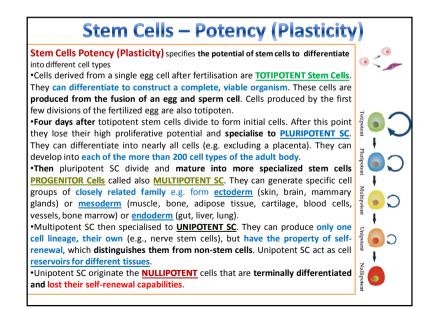
(e.g. regeneration capacity of liver – rat 2/3 hepatectomy, regeneration within 5-7 days)

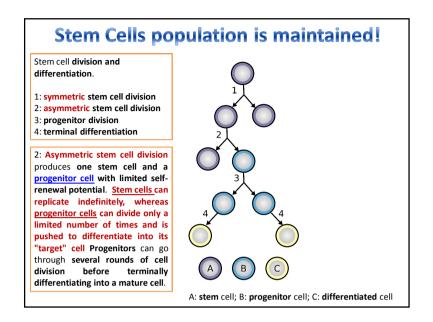
STEM CELLS differ from other cells:

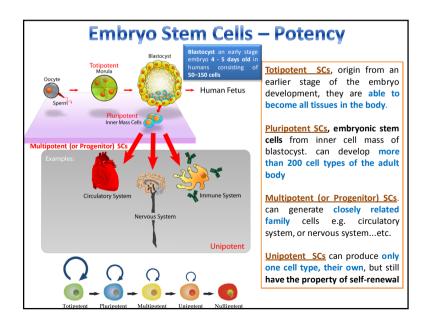
- a/ they are undifferentiated (unspecialised)
- b/ able to multiply for long period while remaining undifferentiated, (small number of SC can create a large population of similar cells)
- c/ the are capable of differentiating into specialised cells of a particular tissue

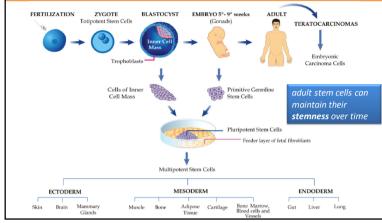

Sources of SC:


- bone marrow
- <u>adipose tissue</u> (lipid cells)
- <u>blood</u>, <u>umbilical cord</u>, <u>amniotic fluid</u> ... etc.


Medical therapies e.g.: bone marrow transplantation (leukemia), other aplications possible in regenerative medicine


Somatic Stem Cells


Stem cells are also found in amniotic fluid (the nourishing and protecting liquid of a pregnant woman). These stem cells are very active, expand extensively without feeders and are not tumorigenic. Amniotic stem cells are multipotent and can differentiate in cells of adipogenic, osteogenic, myogenic, endothelial, hepatic and also neuronal lines. Use of stem cells from amniotic fluid overcomes the ethical objections to using human embryos as a source of cells. It is possible to collect amniotic stem cells, the first US Amniotic stem cells bank was opened in 2009.



The totipotent SC zygote is formed after egg fertilisation of an ovule by a spermatozoid and undergoes several mitotic divisions to form blastocyst, which is divided into <u>extraembryonic</u> (trophoblasts) - cover and <u>embryonic components</u> (inner cell mass, embryonic stem cells), from which all tissues of adult organism originate consits from pluripotent stem cells that can be differentiated into cells of every lineage in human body. Stem cells restricted to one lineage (ectoderm, mesoderm or endoderm) are called multipotent stem cells

SOMATIC Stem Cells & Medical Uses

Somatic (from Greek "of the body") stem cells can be found in children, as well as adults.

Adult Stem Cells:

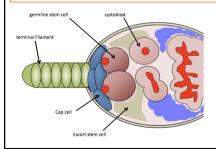
Pluripotent adult stem cells are rare but can be found in a number of tissues including umbilical cord blood, dental pulp (8-10 y/o, can be in future a source for personal banking)

Most adult stem cells are multipotent (lineage-restricted) and are generally referred to by their tissue origin (mesenchymal stem cell, adipose-derived stem cell, endothelial stem cell, dental pulp stem cell, etc.).

Embryonic Stem Cells Behaviour

ESC characterisation: a human embryonic stem cells are defined by the expression of several transcription factors and cell surface proteins. The transcription factors <u>Oct-4</u>, <u>Nanog</u> and <u>Sox2</u> form the core regulatory network that ensures the suppression of genes that lead to differentiation and the maintenance of pluripotency. The cell surface antigens most commonly used to identify hESC are the glycolipids stage specific embryonic antigen.

ESC exploitation: because of embryonic stem cells abilities of unlimited expansion and pluripotency, they remain a theoretically potential source for regenerative medicine and tissue replacement after injury or disease. Many nations currently have moratoria on ES cell research.


ECS properties: Embryonic stem cells will rapidly differentiate without optimal *in vitro* culture conditions or genetic manipulation. Pluripotent embryonic stem cells, require specific signals for correct differentiation, if injected directly into another body, ES cells will differentiate into many different types of cells, causing a tumor teratoma.

Human embryonic stem cells (hES) are possible grown on a feeder layer of mouse embryonic fibroblasts and require the presence of basic fibroblast growth factor (bFGF or FGF-2).

Stem Cell Niche

Stem cell niche represents microenvironment in which stem cells are found, which interacts with stem cells to regulate stem cell behaviour, various niche factors act on stem cells to alter gene expression, and induce their proliferation or differentiation for the development of the foetus. The interplay between stem cells and their niche creates the dynamic system necessary for sustaining tissues in adults.

Germ Stem Cells Niche in Drosophila Ovaries consists of necessary somatic cells-terminal filament cells, cap cells, escort cells, and other stem cells. Niche holds on average 2-3 GSCs, which are directly attached to somatic cap cells and escort stem cells.

Two daughter cells in SC Niche: a/ one stays in stem cell niche retains its self-renewal properties, receives inhibitory differentiation factors b/ the second leaves the niche to proliferate, differentiate (progeny cell) along a determinate lineage, can receive differentiation signals that can force it to become a functional mature cell

Adult Stem Cell - Niches

STEM CELL NICHE define the location of SCs, special microenvironment where stem cells reside, structure and function depending on tissue type, functions as a physical anchor for stem cells by generating factors that control SC proliferation and fate. Niches are specific for each SC type, they have also common features.

Inside the niche are often SCc in the quiescent state. Niches for quiescent SC are located in hypoxic tissue regions (poor in vasculature). E.g. in bone marrow quiescent HSCs are maintained in osteoblastic niche (hypoxic niche). INTERGRINES (type of collagen I-V), CADHERINES, BETA-CATENINE play important role in SCs microenvironment interactions.

Hematopoietic stem cell niche (in the bone marrow is formed by cells: subendosteal osteoblasts, sinusoidal endothelial cells and bone marrow stromal cells which includes a mix of fibroblastoid, monocytic and adipocytic cells.)

Hair follicle stem cell niche (to host the skin stem cells)

Cardiovascular stem cell niche (can be found within the right ventricular free wall, atria of the heart)

Intestinal stem cell niche etc...

Stem Cells - Niche

Within the human body, stem cell niches maintain adult stem cells in a quiescent state, but after tissue injury, the surrounding micro-environment actively signals to stem cells to either promote self renewal or differentiation to form new tissues. Several factors are important to regulate stem cell characteristics within the niche: cell-cell interactions between stem cells, as well as interactions between stem cells and neighbouring differentiated cells, interactions between stem cells and adhesion molecules, extracellular matrix components, the oxygen tension, growth factors, cytokines, and physiochemical nature of the environment including the pH, ionic strength (e.g. Ca2+ concentration) and metabolites, like ATP, are also important. Stem cells differentiated due to environmental cues in their particular niche. Stem cells differentiate when they leave that niche or no longer receive those signals.

Scientists are trying to replicate the *in vivo* niche conditions in vitro. This is because **for regenerative therapies**, cell proliferation and differentiation in flasks. **Human embryonic stem cells are often grown in fibroblastic growth factor-2 containing fetal bovine serum** supplemented media. **Adult stem cells remain in an undifferentiated state throughout adult life**. However, when they are **cultured in vitro**, **they often undergo an 'aging' process** in which their morphology is changed and their **proliferative capacity is decreased**.

Germ Stem Cell - Niche

Molecular Mechanisms of GSC maintenance and activity

Local signals

The Bone Morphogenetic Protein (BMP) ligands <u>Decapentaplegic</u> (Dpp) and Glass-bottomboat (Gbb) ligand are directly signalled to the GSCs, and are essential for GSC maintenance and self-renewal. BMP signalling in the niche functions to directly repress expression of *Bag-of-marbles* (*Bam*) in GSCs, which is up-regulated in developing cystoblast cells. Loss of function of *dpp* in the niche results in de-repression of Bam in GSCs, resulting in rapid differentiation of the GSCs. Along with BMP signalling, cap cells also signal other molecules to GSCs: Yb and Piwi.

Physical attachment

The GSCs are physically attached to the cap cells by Drosophila E-cadherin (DE-cadherin) adherents junctions and if this physical attachment is lost GSCs will differentiate and lose their identity as a stem cell.

Systemic signals regulating GSCs

Both diet and insulin-like signalling directly control GSC proliferation in *Drosophila* melanogaster. Increasing levels of insulin-like peptide (DILP) through diet results in increased GSC proliferation. DILPs regulate also cap cell quantities and regulate the physical attachment of GSCs to cap cells.

Germ Stem Cell - Niche

Molecular Mechanisms of GSC maintenance and activity:

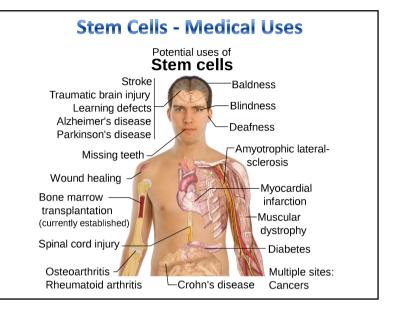
Renewal mechanisms

There are two mechanisms for stem cell renewal: <u>symmetrical GSC division</u> or <u>de-differentiation of cystoblasts</u>. If GSCs are ablated to create an empty niche and the cap cells are still present and sending maintenance signals, differentiated cystoblasts can be recruited to the niche and de-differentiate into functional GSCs.

Stem cell aging

As the Drosophila female ages, the stem cell niche undergoes age-dependent loss of GSC presence and activity. These losses are thought by degradation of the important signalling factors (e.g. Dpp, Gbb and Shg signalling) from the niche that maintains GSCs and their activity. Progressive decline in GSC activity contributes to the observed reduction in fecundity at old age, there is age-dependent reduction of adhesion of GSCs to the cap cells and there is accumulation of Reactive Oxygen species (ROS) resulting in cellular damage which contributes to GSC aging. There is an observed reduction in the number of cap cells and the physical attachment of GSCs to cap cells through aging.

Stem Cells Exploitation


Medical Exploitation:

Adult stem cell treatments have been successfully used for many years to treat leukemia through bone marrow transplants. The use of adult stem cells in research and therapy is not as controversial as the use of embryonic stem cells, because the production of adult stem cells does not require the destruction of an embryo. By autograft, the risk of rejection does not exist. An extremely rich source for adult mesenchymal stem cells is the developing tooth in children.

Induced Pluripotent Stem Cells

Researchers could directly convert mouse fibroblasts (skin cells) into fully functional neurons. This "induced neurons" (iN) cell inspires the researchers to induce other cell types **implies that all cells have potential to be totipotent:** with the proper tools, all cells may form all kinds of tissue.

Induced Pluripotent Stem Cells are not adult stem cells, but rather adult cells (e.g. epithelial cells) reprogrammed to give rise to pluripotent capabilities. Using genetic reprogramming with protein transcription factors, pluripotent stem cells equivalent to embryonic stem cells have been derived from human adult skin tissue. Researchers used the transcription factors Oct3/4, Sox2, c-Myc, and Klf4 in their experiments on cells from human faces. Others used a different set of factors, Oct4, Sox2, Nanog and Lin28 and carried out their experiments using cells from human foreskin.

Stem Cells Treatments

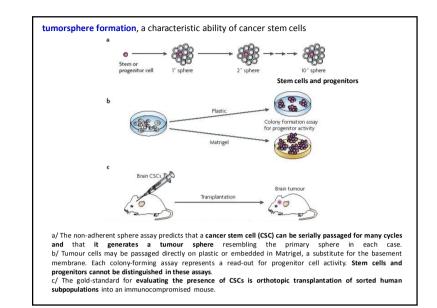
Stem cell therapy has the potential to dramatically change the treatment of human disease. A number of adult stem cell therapies already exist, particularly bone marrow transplants that are used to treat leukaemia. In the future to treat a wider variety of diseases including cancer, Parkinson's disease, spinal cord injuries, Amyotrophic lateral sclerosis, multiple sclerosis, and muscle damage etc. One concern of treatment is the <u>risk that transplanted stem cells could form tumors</u> and become cancerous if cell division continues uncontrollably. The recent development of Induced pluripotent stem cell (iPS cells) has been called a bypass of laws limiting the destruction of human embryos, but it is still not completely clear whether hiPS cells are equivalent to hES cells.

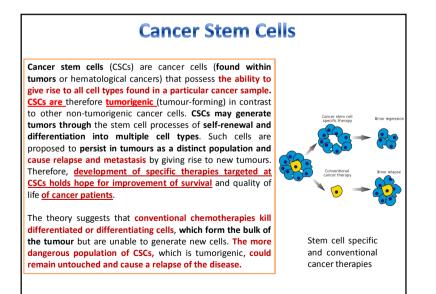
Cancer Stem Cells

CANCER STEM CELLS (CSCs): tumour contains only a very small subpopulation of cancer stem cells (one CSC in a million tumour cells) similar with properties to normal SCs. Transplantation of tumour cells (expressed certain cell surface markers associated with normal SCc (e.g. the cell surface glycoprotein CD44 involved in cell-cell interactions, cell adhesion...) proved their malignant potential, ability to give rise to new tumours when xenografted in immunodeficient mice while other kind of isolated tutor cell could not.

CSCs PROPERTIES:

indefinite proliferation and self-renewal capacity
form differentiated cells


• resistant to apoptosis and drugs (chemotherapy)


(due to active telomerase expression and elevated membrane transport activity) • induce angiogenesis

migrate and propagate

Cancers stem cells (CSCs) drive the disease. CSCs biological properties are often very different than the major tumour cell population. Conventional treatments are often not effective to kill them. Recent findings suggest that recurrent tumours are derived from cancer stem cells (CSCs) that function as the "root" of the tumour.

CSCs have been identified in leukaemia and several solid tumours of the: brain, breast, colon, ovary, pancreas, prostate, melanoma, multiple myeloma.

Cancer Stem Cells Evidence

The first conclusive evidence for CSCs was published in 1997 a subpopulation of leukaemic cells that express a specific surface marker CD34, but lacks the CD38 marker. In cancer research experiments, tumor cells are sometimes injected into an experimental animal. Efficient tumor formation requires thousands or tens of thousands (1 000 – 100 000) of cells to be introduced (i.e. the tumor cells lose their viability during transfer, or the critical importance of the microenvironment) but only a small fraction of the injected cells, the CSCs, have the potential to generate a tumor (e.g. In human acute myeloid leukemia 1 in 10,000).

Further evidence: tumors are very heterogeneous and contain multiple cell types native to the host organ, heterogeneity is commonly retained by tumor metastases. This implies that the cell that produced them had the capacity to generate multiple cell types (possesses multidifferentiative potential, a classical hallmark of stem cells).

http://www.uniprot.org/docs/cdlist.txt

Cancer Stem Cells Importance

Normal somatic stem cells are naturally resistant to chemotherapeutic agents- they have various pumps (such as MDR) that pump out drugs, DNA repair proteins and they also have a slow rate of cell turnover (chemotherapeutic agents naturally target rapidly replicating cells). CSCs that have mutated from normal stem cells may also express proteins that would increase their resistance towards chemotherapeutic agents. These surviving CSCs then repopulate the tumor, causing relapse. By selectively targeting CSCs, it would be possible to treat patients with aggressive tumors, as well as preventing the tumor from metastasizing. As the tumor size increases, it becomes more and more difficult to remove the tumor without resistance and reappear. Some treatments with chemotherapy, such as paclitaxel in ovarian cancer (discovered in late stages) induce chemoresistance in 55-75% to the relapse <2 years. It potentially does this by destroying only the cancer cells susceptible to the drug and allowing the cells which are unaffected by paclitaxel to regrow.

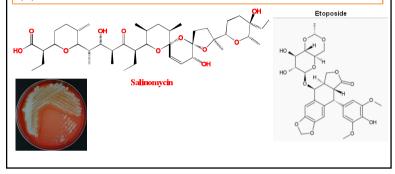
If current treatments of cancer do not properly destroy enough CSCs, the tumor will reappear. If it is possible to eliminate the cancer stem cell, then a potential cure may be achieved if there are no more CSCs to repopulate a cancer.

Understanding the mechanisms by which pluripotency, self-renewal, and subsequent differentiation are controlled in embryonic stem cells is crucial to utilizing them therapeutically.

Cancer Stem Cells

The design of new drugs for the treatment of CSCs will likely require an understanding of the cellular mechanisms that regulate cancer stem cells.

Bmi-1 oncogenic protein specifically regulate hematopoietic stem cells (HSCs), it is necessary for their efficient self-renewing of HSCs as well as neural stem cells. Seems to play an important role in several types of cancer, such as bladder, skin, prostate, breast, ovarian, colorectal as well as haematological malignancies. (PDB: 2ckl)

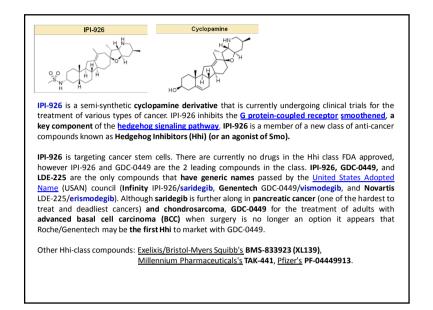

Notch The Notch pathway is a highly conserved cell signalling system control of stem cell proliferation for several cell types (hematopoietic, neural and mammary stem cells). Components of the Notch pathway have been proposed to act as oncogenes. Four different notch receptors (NOTCH1-NOTCH4). The notch receptor is a single-pass transmembrane receptor and promotes proliferative signalling during neurogenesis and its activity is inhibited by <u>Numb</u> to promote neural differentiation. Notch pathway maintaining SCs in an undifferentiated state

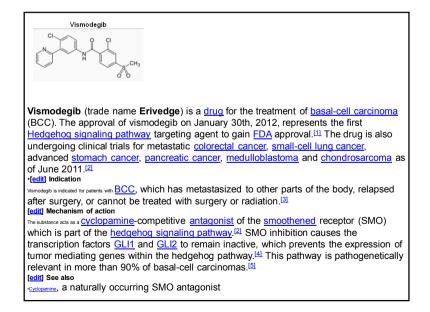
Sonic hedgehog and Wht developmental pathways are also strongly implicated as stem cell regulators Both Sonic hedgehog (SHH) and Wht pathways are commonly hyperactivated in tumors and are required to sustain tumour growth. Sonic hedgehog blockers are available, such as cyclopamine, DMAPT. A clinical trial of DMAPT started in England.

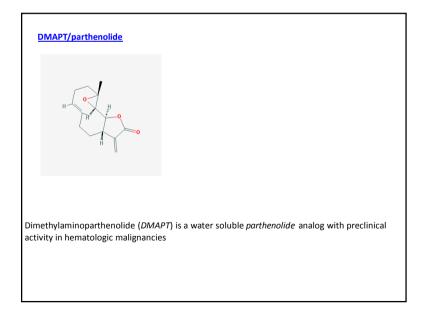
Finally, the enzyme telomerase may qualify as a study subject in CSC physiology. GRN163L (Imetelstat) was recently started in trials to target myeloma stem cells.

Cancer Stem Cells - Treatment

In 2009 study screened 16,000 different chemical compounds found that only a small subset, including salinomycin and etoposide, targeted cancer stem cells responsible for metastasis and relapse. Salinomycin (from mould *Streptomyces albus*) selectively reduces the proportion of breast CSCs in mice by more than 100-fold relative to Paclitaxel. The mechanism remains unknown, it is thought to be due to its action as a potassium ionophore. Studies performed in 2011 showed that salinomycin could also induce apoptosis of human cancer cells.

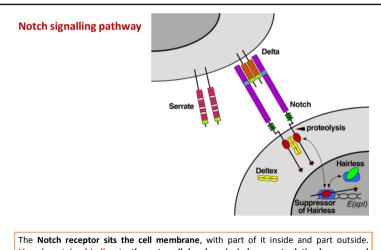


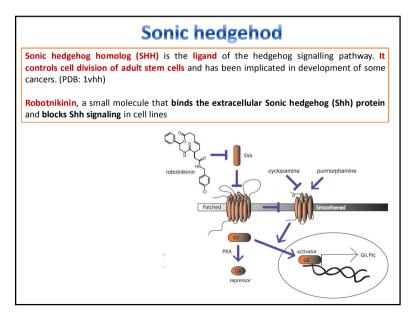

Cyclopamine was named for one-eved lambs which were born to sheep which grazed on wild corn lilv. Eleven-year investigation led to the identification of cyclopamine as the cause of the birth defect. Cyclopamine is a naturally occurring steroidal alkaloid. It is a teratogen isolated from the corn lily (Veratrum californicum) that causes usually fatal birth defects. It can prevent the fetal brain from dividing into two lobes and cause the development of a single eye (cyclopia).



Cyclopamine acts as a primary **inhibitor of the hedgehog signaltransduction pathway** (Hh) **in cells** by **influencing** the balance between the active and inactive forms of the **smoothened** protein. This pathway is used **by cells to help them react to external chemical signals**. The pathway carries out **important functions in embryonic development** and when it goes awry, deformities can occur. However, errant activation of the pathway can also trigger cancer in adult humans, leading to basal cell carcinoma, medulloblastoma, rhabdomyosarcoma, and prostate, pancreatic and breast cancers. Cyclopamine is useful in studying the role of Hh in normal development, and as a potential treatment for certain cancers in which Hh is overexpressed.

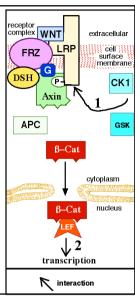
Cyclopamine and its **derivative** <u>IPI-926</u> is in clinical trials for the treatment of various types of cancer that result from excessive Hh activity.




GRN163L (Imetelstat)

the enzyme telomerase GRN163L (Imetelstat) was recently started in trials to target myeloma stem cells.

Ligand proteins binding to the extracellular domain induce proteolytic cleavage and release of the intracellular domain, which enters the cell nucleus to modify gene expression.



Wnt signalling pathway

The Wnt (WINGLESS related protein) a signalling proteins can act as Stem Cell Growth Factors, promoting the maintenance, proliferation and differentiation of SCs. (Wnt) pathway is important for SC self-renewal. AXIN is inhibitor of Wnt pathway, inhibits SC proliferation. (BMP) bone morphogenic protein signalling pathway suppresses Wnt pathway

Axin, GSK and APC form a "destruction complex," and β -Cat is destroyed but in a case Wnt activates the receptor. Axin is removed from the "destruction complex." β -Cat moves into the nucleus, binds to a transcription factor TCF3 on DNA, repressing nanog, a gene required for stem cell pluripotency and self-renewal.

2-amino-4-[3,4-(methylenedioxy)benzyl-amino]-6-(3methoxyphenyl)**pyrimidine is an agonist of Wnt signaling**

COST Action CM1106 – 2012-2015

Cancer stem cells (CSC) are a subpopulation of cells within tumours that exhibit enhanced tumour-initiating invasiveness, survival, chemotherapy resistance, immune modulation, self-renewal and drug resistance characteristics and are a major contributing factor following standard-of-care radiation and chemotherapeutic treatment failure. They have unique ability spread and to seed new tumors throughout the body. This insight necessitates an entirely new approach to cancer drug development to effectively target tumour CSCs. Action endeavours to develop new, effective methods for identifying novel compounds and drug candidates that target drug-resistant cancer stem cells. and tumour-initiating capacity

Currently, only few anti-cancer stem cell agents are known. CSC in vitro model systems allowed screening for CSC targeting small molecules (Gupta et al., Cell, 2009, 4:645-59);

There are **identified some of CSC-specific molecular targets**, including metabolic enzymes, cell cycle regulators, growth factor/receptor tyrosine kinase and cytokine signalling pathways, and actin/intermediate filament cytoskeletal components (Thompsen *et al., Clin Exp Metastasis*, 2011, (2):137-55).

The first anti-cancer stem cell clinical trials have recently been launched in the US by Genentech-Roche (GDC-0449, hedgehog inhibitor) and Merck (MK-0752, notch inhibitor)

Within the COST Action the relevance of tumour mutational status targets (<u>RAS</u> protein, Phosphatase and tensin homolog <u>PTEN, MYC</u> regulator gen, <u>telomerase</u>), metabolic changes targets (Isocitrate Dehydrogenase <u>IDH</u>, tactate Dehydrogenase <u>IDH</u>), receptor trysonine kinase dependent cell signalling (<u>EGF, Au</u>] gene, platelet-derived growth factor <u>PDGF</u>), known stem cell regulators (<u>Notch</u>, <u>Hedgehog</u>) and structural changes targets (vimentin, ABC transporters, glycosyltransferase) that collectively govern self renewal, drug resistance and metastasis will be studied

Thank you for your attention

CSCs - links

Cancer Stem Cell **Project** - <u>http://www.cancerstemcells.ca/project/index.html</u> Canada Identification of Genetic Pathways that Regulate CSCs 2006-8 Cancer Stem Cells **Consortium** - <u>http://cancerstemcellnews.blogspot.com/</u> Cancer Stem Cell News http://www.cancerstemcellconsortium.ca/

Cancer Stem Cells Research Program - <u>http://cancer.stanford.edu/research/stemcell/</u>

Cancer Stem Cell (CSC) Marker

http://www.sinobiological.com/Cancer-Stem-Cell-a-912.html

Literature:

Identification of Selective Inhibitors of Cancer Stem Cells by High-Throughput Screening - P. B. Gupta, R. Weinberg, E. S. Lander - *Cell* **2009**, *134*, 645 – 659.

Cyclopamine and Hedgehog Signaling: Chemistry, Biology, Medical Perspectives - A. Giannis*et al - Angew. Chem. Int. Ed.* **2010**, *49*, 3418–3427.

Chemical Control of Stem Cell Fate and Developmental Potential - C. A. Lyssiotis, P. G. Shultz

CSCs – more info TGF-beta (transformation growth factor beta) + family members (BMPs, nodal, activins) maintenance and differentiation of various adult tissue specific SCs